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Abstract

Barwise and Seligman proposed a very general qualitative theory of information flow (in dis-
tributed systems) while Shannon proposed a very general quantitative theory for communication
flow. The two kinds of flow are not synonymous, with information flow being the more general of
the two. We synthesize a new theory from these two theories so that the qualitative and quantitative
analysis use the same theory structures. The main advantages are (1) Shannon theory gets a more
expressive framework within which to operate, (2) Barwise/Seligman theory gets to take advantage of
quantitative mechanisms. The resultant theory has direct applications to steganography and covert
channels although the development of these applications will appear in a subsequent paper.

1 Introduction

The theory presented in this paper rests upon two particular information theories. The qualitative theory
by Barwise and Seligman [3] is known colloquially as channel theory. The quantitative theory by Shannon
[7] is colloquially known as information theory. As several people have noticed (e.g., [4]), Shannon’s
information theory would be better called communication theory. We concur and the term information
theory will be used in the sense of the joint qualitative/quantitative theory we present in this paper. The
main difference between the two base theories is how they view channels. The Barwise/Seligman notion
of information channel can be made to support Shannon’s notion of communication channel. Conversely,
Shannon’s quantitative methods can provide measures for the Barwise/Seligman notion of channel.

The theory presented here is more general than either Shannon’s or Barwise/Seligman’s for two
reasons:

• Shannon restricted his theory to communication channels. By using quantitative measures on
information channels, Shannon’s theory is made more inclusive and now applies to this more general
notion of channel.

• Barwise/Seligman’s theory ignored quantitative measures in favor of a qualitative theory. We make
the argument that their qualitative framework can guide a quantitative theory by giving the theory
a more expressive scaffolding upon which to apply quantitative measures.

In [5], it is pointed out that the notion of communication channel capacity fails to capture salient
features of covert and steganographic channels. In image steganography, information is hidden in a cover
image. The Shannon analysis of this situation can put measures on the amount of hidden information
the communication channel will support. The problem is that the amounts calculated may have little
to do with the transfer of actual information because the information has a qualitative nature to it not
amenable to the baseline Shannon analysis. A more sophisticated framework is required upon which to
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base the Shannon analysis. Our information theory presented in this paper has a direct application to
steganographic analysis in particular and covert channels in general.

2 Classifications and Infomorphisms

The basic unit of information in channel theory is a tuple of a binary relation. The relationship is between
a token (a piece of data, say, as in Shannon theory) and a type (what kind of thing is this data of). This
is represented as

x |= P

where x is the piece of data, |= is the relation, and P is the type. The symbol, |=, is the usual semantic
symbol of logic and is usually interpreted in logic as “x satisfies P”. This paper will treat |= as the
relation “x is of type P”. There is to be no metaphysical or epistomological baggage to be associated
with “x is of type P” even though we sometimes use the verb “satisfy” when talking about |=. Also,
one cannot express any property about a single token unless the property is reified as a type and the
expression is via the |= relation. Hence, for a number x as a token, one can only express its value V by
an expression of the form x |= V . In this sense, channel theory enforces a discipline that is sometimes
lacking in analysis of information.

To relate the description in the preceding paragraph to Shannon’s theory will take most of the work
done in the sequel. However, to help orient a reader versed in Shannon’s theory, we offer here this
description. The basic unit of information in Shannon’s theory is also a tuple of a binary relation. The
relation is restricted to be of the form x |= V where |= is a function and V is value of the token x.
The resulting structure is typically called a state space where V is a state and the tokens are forgotten.
Channel theory also has state spaces except the tokens are not forgotten and types are values. States
are sometimes further collected together to form events. Channel theory allows this also by first keeping
the tokens and then replacing the states as types with events as types. For some event E, x |= E
just when x |= s for some state s ∈ E. Hence, Shannon’s basic ontology is neatly embedded in channel
theory’s ontology with channel theory being somewhat more rigorous about the specification of the entities
involved.

A collection of types and tokens with their relation is known as a classification. A more telling term
might be universe of discourse and one can freely interchange the two terms. A classification is just what
you thought it was, it is a collection of things which have the form of “x is a P”, or in our parlance, “x
is of type P”, i.e., x |= P . Information can flow between two classifications via an infomorphism which is
a special pair of contravariant maps between classifications, one for tokens and one for types. When the
information flow between two classifications is of such complexity that it cannot be adequately expressed
using a single infomorphism, the flow can be re-expressed as a channel. A channel is another classification
which is connected to the original two classifications via infomorphisms.

2.1 Classifications

Definition 2.1.1 (Barwise–Seligman) A classification, A, is a pair of sets and a relation. The
sets are called, respectively, the tokens, Tok(A), and types, Typ(A). The binary relation, usually
symbolized by |=, is between the two sets, i.e., |=A⊆ Tok(A) × Typ(A). The term x |=A P means
〈x, P 〉 ∈|=A with x ∈ Tok(A) and P ∈ Typ(A).
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|=AClassification A

•P The diagram only indicates that
a ∈ Tok(A) and P ∈ Typ(A), not
that a |=A P .

It is convenient to talk about all of the tokens satisfying a single type or all of the types satisfying a
particular token. The following definition relativizes Typ(−) and Tok(−) to a particular classification.

Definition 2.1.2 Let A = (Tok(A), T yp(A), |=A) be a classification, then for any P ∈ Typ(A), Tok(P ) =
{y | y |=A P} and, for any x ∈ Tok(A), Typ(x) = {Q | x |=A Q}.

Example 2.1.3 Let FOL = (Models, Sentences, |=FOL) where Sentences are sentences in first order
logic (FOL), Models are models of first order sentences, and x |=FOL S iff x is a model of the sentence
S. Notice there are a number of internal relations that hold of the set of sentences and the set of models.
However, none of these relations are imposed as external conditions in this example. The example could
be pumped up to include them. One could also flip this example so that the types were Models and
the tokens were Sentences, in which case, Sentences would be classified by Models rather than Models
classified by Sentences.

Example 2.1.4 Let T = (Points, Opens, |=T ) where Points are the points of a topological space, Opens
are the set of open sets of that space, and x |=T O iff x ∈ O. This classifies points by the open sets in
which they are contained. By reversing the |=T , one could classify the opens by the points. The set of
open sets forms a Heyting lattice, but that is not specified in this classification and hence no use of this
classification within information theory can make use of that fact. It could, however, be imposed on the
classification from the outside.

Example 2.1.5 Let M = (Messages, Contents, |=M ) where Messages are classified by their contents.
One could use an entire theory of content in conjunction with the set of types, the theory would have
much internal structure. This internal structure is not required by channel theory, but it could be imposed
or stipulated if needed.

Example 2.1.6 Let D = (Times, {0, 1}, |=D) where Times is a set of discrete time stamps, and t |=D 1
iff some message was sent at time t and t |=D 0 iff no message was sent at time t. Also, t 6|=D 1
does not automatically imply t |=D 0; there is nothing within channel theory to force this condition.
The situation described by this classification might be such that there is incomplete information about
whether a message has or has not been sent. You may, however, stipulate (from the outside) such a
constraint within the classification. The distinction here from the previous example is that with respect
to communication channels, sometimes it is not the messages themselves that are to be modeled but
rather information about the messages.

2.2 Infomorphisms

The “flow” of information flow is rarely qualified in many theories of information flow although it is
frequently quantified as data flow. Since the currency of information is the tuple “x is of type P”, to
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translate information (where here we are using “translate” in its sense as a preservation mapping), one
first thinks to translate the x to a y and the P to a Q. This turns out not to be in accord with most uses
of classifications within mathematics and logic. More to the point, the morphisms of classifications must
relate tokens and types of two classifications in a special way, not simply translate token-type tuples to
token-type tuples. The reason for this is that the “flow” of information flow is a flow of logical reasoning,
not a flow of the currency.

Definition 2.2.1 (Barwise–Seligman) Assume classifications A = (Tok(A), T yp(A), |=A) and B =
(Tok(B), T yp(B), |=B). An infomorphism h : A −→ B is a pair of contravariant maps,

−→
h and

←−
h such

that
−→
h : Typ(A) −→ Typ(B) and

←−
h : Tok(B) −→ Tok(A), and for all p and Q, the following condition

is satisfied:
ph |=A Q iff p |=B Qh,

where for ease of presentation,
←−
h (p) is displayed as ph and

−→
h (Q) as Qh.

This can be pictured with:

Typ(A)

Tok(A)
������ ��

��
�� ������ ��

��
��•

p

//
−→
h

oo
←−
h

|=A |=B

•Q

ph |=A Q iff p |=B Qh

Typ(B)

Tok(B)

The infomorphism h above is (by convention) a morphism from the classification A to the classification
B. Note that this is not a commutative diagram, the |=A and |=B lines are not arrows or maps. They
merely indicate binary relations.

Example 2.2.2 Let SET = (Models, Sentences, |=SET ) where Sentences are sentences of set theory in
the language of FOL, and Models are models of set theory. Let NUM = (Sentences,Models, |=NUM )
where Sentences are sentences of number theory in the language of FOL and Models are models of
number theory. An infomorphism h : NUM −→ SET might describe number theory as a part of set
theory, i.e., translate every sentence in number theory into an equivalent sentence in set theory. The
models map goes in the opposite direction, every model of set theory provides a model of number theory.
Let m be model of set theory and P some statement of number theory, then

mh |=NUM P iff m |=SET Ph

says that mh is model of a sentence P in number theory iff m itself is a model of the interpretation of P ,
namely Ph, in set theory.

Example 2.2.3 Let T and T ′ both be topological classifications, then a map f : Tok(T ) −→ Tok(T ′) is
continuous just when f−1 is a map from Typ(T ′) to Typ(T ). The pair f, f−1 constitutes an infomorphism
from T ′ to T . For any point x and open set O:

xf |=T ′ O iff x |=T Of
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simply because
f(x) ∈ O iff x ∈ f−1(O).

Example 2.2.4 Assume there are message classifications M = (Messages, Contents, |=M ) and M ′ =
(Messages′, Contents′, |=M ′). An infomorphism h : M −→M ′ might model a function changing mes-
sages from M ′ to messages in M such that what can be said about the translation can be mapped into
something that can be said about the original message:

mh |=M C iff m |=M ′ Ch

Here, the translation is working distinctly opposite from that of number theory into set theory.

Example 2.2.5 Let D = (Times, {0, 1}, |=D) and D′ = (Times, {0, 1}, |=D′) be two discrete time
classifications of messages. An infomorphism h : D −→ D′, defined as th = t′ where t′ means the next
time step after t and Nh = N for N ∈ {0, 1}, models sending messages at one time interval and their
reception at the next.

th |=D 1 iff t |=D′ 1h th |=D 0 iff t |=D′ 0h

says that a message associated with time th is received iff a message associated with time t is sent, and
that no message is associated with th iff no message was sent at time t. Notice that there is no mention
that a message sent must be the same as a message received. Again, this is something external to be
stipulated. One could easily change the tokens to include the actual messages in order to accommodate
this restriction. In this example, the communication channel is modeled as an infomorphism. For more
complicated communication channels, this will not be sufficient and the communication channel will be
modeled as another classification.

3 Classifications and Probability

3.1 State Spaces and Event Classifications

Definition 3.1.1 (Barwise-Seligman) A state space, S = (Tok(S), T yp(S), stateS), is a classifica-
tion where stateS : Tok(S) −→ Typ(S) is a function, i.e., each token is of unique type.

The tokens are typically abstractions of the system. One might view the tokens as snapshots of the
system at various times. The types are typically vectors of values of the system variables. One could
reify the tokens as vectors of system variable values at a specified times. In this case, the state function
merely strips off the time value yielding the vector representing the system state. The reason stateS is a
function is that a system can be in only one state at a time.

Definition 3.1.2 (Barwise-Seligman) A state space morphism, f : S −→ S, is a pair of maps
←−
f : Tok(S) −→ Tok(S) and

−→
f : Typ(S) −→ Typ(S) such that

stateS(x
f ) = (stateS(x))f .

Note both maps run in the same (covariant) direction in contradistinction to infomorphisms which
run in opposing (contravariant) directions. Typically, state space analyses totally ignore the notion of
token and only the states are deemed important. However, this is not sensitive enough for a qualitative
theory where a state may arise for two entirely different reasons. Also, a token is typically not the system
itself. Were that the case, there would be only one value or type. A token must be more of an abstract
notion of the system at a particular time or place.
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Definition 3.1.3 (Barwise-Seligman) The event classification, Evt(S), associated with a state
space S has tokens Tok(S) and types Typ(Evt(S)) = P(Typ(S)) where P(Typ(S)) is the power set
of Typ(S).

This definition could be weakened by requiring only Typ(Evt(S)) ⊆ P(Typ(S)), but it is handy for Evt
to identify a particular event space.

Definition 3.1.4 (Barwise-Seligman) Given the state space morphism f : S −→ S, the event

space morphism Evt(f) : Evt(S) −→ Evt(S) is a pair of contravariant maps where
←−−−−
Evt(f) =

←−
f and

−−−−→
Evt(f) =

−→
f
−1

.

3.2 Probability Spaces

The notion of probability adheres to the types of a classification. Let A = (Tok(A), T yp(A), |=A) be a
classification. For E a type, P(E) is the probability assigned to the type E, and is thought of as the
probability that any token is of type E. The probability is taken with respect to the entire set of tokens.
Notice that this is distinctly different than the notion of a particular x being of type E with a probability
or confidence level of p. This latter might be symbolized with x |=p

A E and represents the idea that |=A

(in this instance) is not a concrete relation or a relation we have concrete information about. This has a
distinctly Bayesian tinge to it and, although intriguing, we will not consider it here.

Shannon theory always works at the level of types. The reason Shannon theory works at the level of
types is because it is working with average amounts of information, not specific pieces of information.
Typically, probability theory would force the assumption that the collection of types be a Borel algebra.
A probability function P is then a monotone map from this Borel algebra to the set of real numbers
[0, 1], i.e., for x, y members of a Borel algebra upon which P is defined, x ≤ y implies P(x) ≤P(y).

There is no structure imposed by channel theory upon any set of types although there is an induced
preorder. It is this preorder we take advantage of when defining probability functions for classifications.

Definition 3.2.1 Given a classification A, the token induced preorder on Typ(A) is defined with

P ≺ Q iff Tok(P ) ⊆ Tok(Q).

and the token induced partial order on Typ(A) is defined with

P � Q iff P ≺ Q or Tok(P ) = Tok(Q).

The partial order � is essentially ≺ divided out by any symmetries induced by equalities of the form
Tok(P ) = Tok(Q) yielding P ≺ Q and Q ≺ P . The reason to define ≺ as a preorder instead of promoting
it to a partial order is because the collection of types might have a very intensional description and this
would be lost if ≺ collapsed types based on the extensional nature of sets alone.

Definition 3.2.2 Given a classification A, a set Γ ⊆ Typ(A) is called disjoint just when for any two
types P,Q ∈ Γ, Tok(P ) ∩ Tok(Q) = ∅.

Definition 3.2.3 An abstract probability space is a classification A together with a probability
function P : Typ(A) −→ Reals satisfying (for types P and Q):

(P1) for any countable set Γ of disjoint types with members Pi,

0 ≤
|Γ|∑
i=1

P(Pi) ≤ 1;
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(P2) if Tok(P ) = Tok(A) then P(P ) = 1;

(P3) for any countable set Γ of disjoint types with members Pi,

[∀i (1 ≤ i ≤ |Γ| implies Pi ≺ Q)] implies
|Γ|∑
i=1

P(Pi) ≤P(Q);

(P4) for any countable set Γ of disjoint types with members Pi,

Tok(Q) ⊆
⋃

(Tok(Pi) | Pi ∈ Γ) implies P(Q) ≤
|Γ|∑
i=1

P(Pi);

(P5) Tok(P ) = ∅ implies P(P ) = 0.

The axiom (P2) is different than in Kolmogorov’s axioms for the simple reason that there need not
be a type which all tokens satisfy. One can always adjoin a type, U , to the types (of a classification) such
that all tokens satisfy U and it will not affect the exposition here. The third axiom implies that P is
monotone and hence P ≺ Q and Q ≺ P imply P(P ) = P(Q). The third and the forth axioms will force
the Kolmogorov axiom

P(
∨
i

{Pi | Pi ∈ Γ}) =
|Γ|∑
i=1

P(Pi)

to be true if the collection of types is a Borel algebra. The last axiom is an abstraction of the situation
where event spaces are generated from state spaces and the observation that if a state cannot occur, i.e.,
it has no tokens, then it must have probability of 0. Events are collections of states, so if the states of an
event have no tokens, the event has probability 0.

Theorem 3.2.4 If A is an abstract probability space when Typ(A) under the token induced � partial
order has a Borel lattice structure, then A is a probability space.

proof: The Kolmogorov axioms for a probability space are easily seen to be true under these conditions.

The ≺ order is a remnant of the Boolean lattice order of a Borel algebra. In fact, if the classification
does arise as an event space from a state space, the � order is very nearly the ⊆ order on the event space.
The only difference is that the event space definition does not require a state have tokens yet the � order
is defined entirely in terms of tokens. If this is the case, i.e., every state of every event has tokens, then
the two orders are isomorphic. In any case, with the exclusion of the last axiom, every probability space
defined on an event space is an abstract probability space since the first three axioms are easily satisfied
and, since ∪ is the least upper bound, the forth axiom is satisfied.

Theorem 3.2.5 Let E = (Typ(Evt(S)),
⋂

,
⋃

,−,>,⊥) be the complete Boolean lattice of sets where
Evt(S) is the event space defined from a state space S and > = Typ(S) and ⊥ = ∅. Let

T (E) = {u | u = Tok(P ) and P ∈ Typ(Evt(S))}.

Then T = (T (E),
⋂

,
⋃

,−, T ok(S), ∅) is a complete Boolean lattice of token sets. The function f : E −→ T
where

f(P ) = Tok(P ) = {x | x |=S s and s ∈ P}

is a lattice epimorphism sending > to Tok(S) and ⊥ to ∅. If Tok(s) 6= ∅ for all s ∈ Typ(S) then Tok(−)
is also 1-1.
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proof: Let Γ ⊆ Typ(Evt(S)) then

x ∈ Tok(
⋃
{P | P ∈ Γ}) iff (∃s ∈

⋃
{P | P ∈ Γ})[x |=S s]

iff (∃s )(∃P ∈ Γ )[x |=S s and s ∈ P ]
iff (∃P ∈ Γ )[x ∈ Tok(P )]

iff x ∈
⋃
{Tok(P ) | P ∈ Γ}

and
x ∈ Tok(

⋂
{P | P ∈ Γ}) iff (∃s ∈

⋂
{P | P ∈ Γ})[x |=S s]

iff (∃s ∀P ∈ Γ )[x |=S s and s ∈ P ]
iff (∀P ∈ Γ )[x ∈ Tok(P )]

iff x ∈
⋂
{Tok(P ) | P ∈ Γ}

and for P ∈ Typ(Evt(S)),

x ∈ Tok(>− P ) iff (∃s ∈ >− P )[x ∈ Tok(s)]
iff x 6∈ Tok(P )
iff x ∈ Tok(S)− Tok(P )

and
x ∈ Tok(>) iff (∃s ∈ S)[x ∈ Tok(s)]

iff x ∈ Tok(S)
x ∈ Tok(⊥) iff (∃s ∈ ⊥)[x ∈ Tok(s)]

iff x ∈ ∅

This shows the set operations on T (E) are well-defined and that f is an epimorphism. Assume Tok(s) 6= ∅
for all s ∈ Typ(S) and for P,Q ∈ Typ(Evt(S)), P 6= Q. Without loss of generality, let s ∈ P and s 6∈ Q.
Since Tok(s) 6= ∅, there is some x such that x |=S s and x ∈ Tok(P ). Since |=S is a function (as opposed
to a mere relation), x 6∈ Tok(Q) and therefore f is 1-1.

Example 3.2.6 Suppose there is a physical system which is described by a state space S. Let Tok(S) be
instances of the system at various times. Time need have no beginning and end for the system although
you can impose one. The states of the system are vectors of measurable properties. The event space
Evt(S) has as types the power set of Typ(S), and as tokens Tok(S) such that x |=EvtS

E iff there is
some s ∈ E and stateS(x) = s. The proportion of time the system spends in a particular state, s, is
modeled as P(s). The proportion of time associated with an event E is P(E) which totals up all the
time the system spends in any of the states of E.

Incidently, the ≺ order turns out to be preserved by infomorphisms, i.e., they are monotone maps on
types. That this order is preserved by infomorphisms without any extra conditions shows that this order
is an intrinsic feature for this category of classifications.

Theorem 3.2.7 Let h : A −→ B be an infomorphism, then P ≺ Q implies Ph ≺ Qh.

proof: Assume P ≺ Q and let x ∈ Tok(Ph), then x |=B Ph. From the infomorphism condition, xh |=A P
and hence xh ∈ Tok(P ). Since P ≺ Q, xh ∈ Tok(Q) and xh |=A Q. From the infomorphism condition
again, x |=B Qh and hence x ∈ Tok(Qh). By definition Ph ≺ Qh.
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Dually, one can define a preorder on tokens by extending Typ(−) within a classification A using
Typ(x) def= {P | x |=A P}. And a similar theorem will show that x ≺ y implies xh ≺ yh for h : A −→ B.

Theorem 3.2.8 Let h : A −→ B be an infomophism, then
←−
h (Tok(Ph)) ⊆ Tok(P ) and

−→
h (Typ(xh)) ⊆

Typ(x).

The proof is a simple application of the infomorphism condition. In fact, these two theorems taken
as axioms completely characterize infomorphisms.

4 Sequents and Logics

A sequent represents a constraint that may or may not hold of a classification. It is a logical statement
in that it represents a relation between premises and conclusions. The premises and conclusion are sets
of types. It is sequents that enable the flow of information. The information flow they enable is an
information flow of reasoning. That said, sequents may also be used to model communication flows
when the sequents are modeling communication. A communication sequent or gate can be thought of as
allowing a token to flow under it just when the token satisfying the premises also entails that the token
satisfy the conclusion.

4.1 Sequents

Definition 4.1.1 (Barwise–Seligman) Let A be a classification. A theory for A is a collection of
sequents of the form:

Γ `A ∆

where Γ and ∆ are collections of types and the `A is the turnstile of logical consequence.

This is the usual notion of sequent. The types in Γ are thought of as conjoined together and the types
in ∆ are thought of as disjoined. The requirement for a token, x, to satisfy the above sequent is:

(for all P ∈ Γ, x |=A P ) implies (there exists one Q ∈ ∆, x |=A Q).

When Γ or ∆ are singleton sets, say, {A}, then A ` ∆ or Γ ` A will be used. It is important to notice
there is no logical structure imposed on the types as a restriction imposed by channel theory. They are
merely types. Any logical structure could be imposed as a result of attempting to model some domain
of discourse, but channel theory simpliciter does not impose one itself. To impose structure on the
collection of types means that that structure is not accessible via channel infomorphisms (i.e., at the level
of category theory) and only accessible at the additional cost of extra mathematical scaffolding. Any
extra structure would come about because some peculiar feature of a universe of discourse needed to be
modeled.

4.2 Logics

Definition 4.2.1 (Barwise-Seligman) A local logic L = 〈A,`L, NL〉 consists of a classification A,
a set `L of sequents involving the types of A, and a subset NL ⊆ Tok(A) called the normal tokens of
L, which satisfy all the constraints `L. A local logic L is sound if every token is normal; it is complete
if every sequent that holds of all normal tokens is in the consequence relation `L.
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Typically, the sequents are required to follow certain structural rules but these will not concern
us in this paper. The following two (non-structural) rules allow for the movement of logics between
classifications connected via the infomorphism f : A −→ B:

Γ−f `A ∆−f

f -Intro
Γ `B ∆

Γ `A ∆
f -Intro

Γf `B ∆f

Γf `B ∆f

f -Elim
Γ `A ∆

Γ `B ∆
f -Elim

Γ−f `A ∆−f

where Γ−f is a nicer way of writing
−→
f −1, i.e., the inverse image of Γ under f and ∆f is the direct image

of ∆ under f . Each rule has two forms. f -Intro preserves validity, to wit: assume the premise and let
x be a counter-example to the conclusion. If f(x) |=A P for all P ∈ Γ−f (vacuously if Γ−f ) = ∅), then
xf must satisfy at least one Q ∈ ∆−f . Since xf |=A Q, then x |=B Q which is a contradition to x
being a counter-example. f -Elim fails to observe validity since it is possible for a counter-example in the
conclusion to have no preimage under

←−
f . Of course, if

←−
f (Tok(B)) = Tok(A), then the rule will preserve

validity. Preservation of non-validity is exactly the opposite for the two rules.
The two different forms of the rules are quite different because they are working on sets. Consider

the two cases of f -Elim. In the first, the types in Γ and ∆ are types of A that have been mapped to B
under f . In the second, the types in Γ and ∆ are types of B that are pulled back along f to types in A.

Probabilities can be assigned to sequents. Consider the simple sequent in A and its satisfying condi-
tion:

P `A Q ∀x (x |=A P implies x |=A Q).

To attach a probability to this sequent means to weaken it so that it only only holds for some of the
tokens and fails to hold the rest. Hence, to weaken the sequent is to remove the universal quantifier and
then attach a probability to x |=A Q given that x |=A P for arbitrary x. What is the probability that
x satisfies Q given that it satisfies P? This is a statement of conditional probability, so we make the
following definition

P `P
A Q

def= P(Q | P ).

When a sequent’s conditional probability is known to be, say p, then this will be indicated by

P `p
A Q.

To actually use P `A Q in an argument, one must first have

x |=A P

The probability of this obtaining in A is P(P ). The use of the rule has the computed probability,

P(P ) · (P `P
A Q).

The use of conditional probability to interpret ` is similar to the use of conditional probability in [1]
to interpret ⇒. In that book, the use of ⇒ is derived from conditional probability. Here, the ` is a
pre-existing concept which, given a probabilistic clothing, is a definition of conditional probability. This
points out that ` is not the same as the material conditional of classical logic and in fact, has no proof
theoretic character in channel theory unless provided with a supporting cast which includes a formal
system.

Channel theory has sequents of the form Γ `A ∆ for a classification A. To use a sequent of this form,
P will need to be extended to cover the case of sequents for the following calculation:

P(Γ) · (Γ `P
A ∆).
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For a token to satisfy Γ, it must satisfy every element of Γ and hence Γ is thought of conjunctively. In
probability theory, this is generally not a problem since Γ could be equated to

∧
Γ and Typ(A) would

actually be a Borel lattice of sets with countable meets and joins. Space prevents us from a complete
exposition here but the trick is to transfer P from Typ(A) to the tokens set {Tok(P ) | P ∈ Typ(A)}.
As a set of sets, a semilattice can be generated isomorphic to the free meet semilattice using Typ(A)
as generators. This is essentially the intersection semilattice generated by {Tok(P ) | P ∈ Typ(A)}. A
similar construction must be done for the complete join semilattice to evaluate P(∆ | Γ). However, a
further quotient join semilattice must be constructed by dividing the join semilattice with a collection of
equalities of the form P = 1 for all P ∈ Γ where 1 is the top of the join semilattice.

A good probability function is any that satisfies the axioms (P1)−(P5) now transferred to {Tok(P ) | P ∈
Typ(A)} and is defined over the newly introduced semilattices. Space prevents us from a fuller exposition
here and the sequents used in examples in the sequel will be only of the form P `A Q or P, P ′ `A Q.

5 Information Channels

An information channel is a classification used to connect other classifications where the connections are
infomorphisms. It is information channels that support information flow by means of sequents. One might
think that the notion of a “channel” should be captured by an infomorphism. An information channel
in the binary case (where two classifications are being connected) is a two-way channel. An information
channel supports the form of distributed reasoning where one can think of the reasoning as moving along
the channel. This is an entirely abstract concept which, given some restrictions, has communication
channels as concrete instances.

5.1 Basic Definitions

Definition 5.1.1 (Barwise–Seligman) An information channel is consists of an indexed family
C = {fi : Ai −→ C} of infomorphisms with a common codomain C called the core of the channel.
Diagrammatically,

C

A

f1

77oooooooooooooooooo
A

f2

@@����������
· · · An

fn

iiRRRRRRRRRRRRRRRRRRRRRRR

Frequently in the sequel, the term channel will be (mis)used to refer to the core of the channel. This is
for mere expediency and the reader is asked to be forgiving. There is never any question as to which
morphisms are involved.

Example 5.1.2 Let C model a single user sending messages to two different people, Alice, modeled by
A and Eve, modeled by E. C is to be a channel between A and E but notice this is not a communication
channel since neither Alice nor Eve are sending messages to each other. The tokens are the individual
mail messages with Alice and Eve both mentioned as recipients in the message headers. The types are
facts about those mail messages. Let A, C, and E all share the same types and the same tokens. The
channel diagram is

A
id // C E

idoo

Alice can reason about what Eve knows by reading the mail messages and noticing that the same messages
were sent to Eve. Eve can do likewise, hence this is a bi-directional information channel. In channel
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theoretic terms, Alice reasons by seeing if a token satisfies sequents of the form Γ `A ∆. Since all the
infomorphisms are the identity morphism, Alice knows that Γ `C ∆ holds in the channel and that Γ `E ∆
holds for Eve.

The above analysis points out that the channels of channel theory are (in general) bidirectional. The
reason is they present us with ways of stating properties of the information of the channel, and those
properties are entirely determined by the outside environment, either by ourselves by fiat (convention)
or by physical attributes. These properties are then formalized as the types of the channel. The example
of current in a wire is a good example. It is only by stipulation that current goes in one direction when
in fact it can be looked at as bidirectional for positive and negative charge.

Example 5.1.3 Consider the case of an initiator of communication, I, and a receiver, R with a binary
channel, IR, between them meant to represent a communication channel:

IR

I

i

@@����������
R

r

__>>>>>>>>>>
• •
◦

◦

◦
◦ ◦

◦ ◦◦ ◦ ◦
◦◦

◦
◦

◦ ◦ ◦

◦◦

◦◦◦
// //I IR R

Let
←−
i : Tok(IR) �−→ Tok(I) and ←−r : Tok(IR) �−→ Tok(R), i.e.,

←−
i and ←−r are like projection maps

except that they inject tokens from the channel into the token sets of I and R. The injections model
that I only sends part of Tok(I) and R only receives part of Tok(R).

Let a sequent in an information channel representing a communication channel be called a gate. It
is tempting to view the classification structure (on the left above) as a mathematical description of the
(intuitive view) of a communication channel (on the right) where each ◦ in the respective classifications
is a tuple of the |= relation specific to that classification. The tuples are the information that is produced
at I, travel through the IR via one of the routes, and arriving at R. Each route is mediated by a gate
(sequent) to which a probability will be assigned.

This second diagram is misleading in the sense that information tuples do not actually move in the
classification scheme. Instead, there are static mathematical relationships which relate tuples of the
classification I to those of IR, and similarly, tuples of R to those of IR. It is our external claim that
the mathematics models the communication channel. Now that there is a mathematical model, however,
it can be tested to see with what degree of fidelity it models the real situation.

The initiator I is intending to send not simply a message mi but instead the tuple 〈mi, C〉 ∈|=I since
this is the basic unit of currency in channel theory. It is the image, mi, under infomorphism i of channel
message m that I is sending. If there is no C for which mi |=I C, then in effect there is nothing I
can say about mi. The communication can still take place, but nothing can be said about actual value
transferred.

It is I’s intention that the fact of mi |=I C be communicated to R. Assuming no loss of information
for the signal, this requires that I and R agree on the types used for communication purposes. The sense
of the communication is then

mi |=I C iff m |=IR Ci infomorphism condition
implies m |=IR Cr ?
iff mr |=R C infomorphism condition

where ? indicates a missing reason (supplied below). Clearly, this should be the case for all types C.
Necessarily, I and R must have agreed on channel sequents for these (but not all) types. Suppose there are
no channel sequents. It is possible for xr |=R C ′ for some C ′. One could hardly say that communication
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has taken place because C ′ has no connection with I. The relationship xr |=R C ′ is spurious or accidental
and R can get no information about I from it.

Note that one cannot even tell in which direction the communication is taking place. To actually say
something about the communication, one must classify precisely what is to be said. Let there be types
Src ∈ Typ(I) and Dst ∈ Typ(R) such that for all tokens x ∈ Tok(IR),

xi |=I Src xr |=R Dst.

Now, the channel models a direction via the stipulated conditions on infomophisms, i.e.,

xi |=I Src iff x |=IR Srci xr |=R Dst iff x |=IR Dstr,

and with channel tokens satisfying the following gate on the left via the condition on the right:

Srci `IR Dstr for all z ∈ Tok(IR), z |=IR Srci implies z |=IR Dstr.

This gate supplies the missing condition (?) above for Ci = Srci and Cr = Dstr. This stipulated direction
through the channel appears artificial but it is also echoed in information transfer in Shannon’s theory.
There, all one has is measurement of the information that was transferred. From the measurements alone,
it is impossible to tell the direction of information flow.

Definition 5.1.4 (Barwise-Seligman) A distributed systemA consists of an indexed family cla(A) =
{Ai}i∈I of classifications together with a set inf(A) of infomorphisms all having both domain and
codomain cla(A).

A distributed system is simply a collection of classifications and some infomorphisms between some
of the classifications. From Barr in [2] reporting on the work of his graduate student Chu, it is clear that
categories of classifications have colimits. A colimit of a distributed system is a minimal channel amongst
all the channels, each channel connecting the entire distributed system. To be a channel for a distributed
system is to cover the system. An analogous concept in partial orders is that of an upper bound (think
of classifications as points and infomorphisms as elements of the partial order relation), a colimit would
be a least upper bound.

Definition 5.1.5 (Barwise-Seligman) A channel C = {hi : Ai −→ C}i∈I covers a distributed system
A if for each i, j ∈ I, and each infomorphism f : Ai −→ Aj in inf(A), the following diagram commutes:

C

Ai

hi

@@����������

f
// Aj

hj

^^==========

C is a minmal cover of a distributed system A if it covers A and, for every other channel D (with core
D) covering A, there is a unique infomorphism from C to D.

Theorem 5.1.6 (Chu) Every distributed system has a minimal cover, and it is unique up to isomor-
phism.
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Example 5.1.7 An infomorphism is a restricted form of a channel. This construction of a channel from
an infomorphism is instructive in that it shows how much more freedom there is in the notion of an
information channel. Let f : A −→ B be an infomorphism. The intuitive idea is to represent

←−
f in its

graph form and
−→
f as quotient on the disjoint union of Typ(A) and Typ(B). The colimit of this as a

distributed system has the following intuitive diagram on the left specifying the conditions on the right:

C

A

π1

@@����������

f
// B

π2

^^==========

←−
f (x) =

←−
f (←−π 2(〈y, x〉)) =←−π 1(〈y, x〉) = y,

−→π 1(
−→
f (Q)) = −→π 2(Q).

for all types Q. This simply assures a type Q from A is sent to the same type as
−→
f (Q) when both are

injected into the channel C.

5.2 Modeling Communication

We now study an example from [6], where a standard Shannon-type analysis was done of a covert channel.
We show how our new framework extends the classical analysis. The scenario is simple: there are two
users, Alice and Clueless, inside of a private enclave. Alice and Clueless have no knowledge of what the
other is doing. The users may transmit no message or one message per unit time to a second enclave.
The transmissions between enclaves are encrypted and all messages appear the same to an eavesdropper
Eve. The only thing that Eve can do is count the number of messages (per unit time) going from the first
enclave (that of Alice and Clueless) to the second enclave. Therefore Eve sees zero, one, or two messages
per unit time. Alice uses this scenario to covertly communicate with Eve. Alice will attempt to send a
bit to Eve per unit time interval. This is the most that Alice can send because Alice only has two actions.
The actions of Clueless act as noise in the covert channel.

Alice will send a 0 by not sending a message. If Alice sends a 0 and Clueless does not transmit, then
Eve receives a 0. Alice will send a 1 by sending a message. If Alice sends a 1 and Clueless does not
transmit, then Eve receives a 1. If Alice sends a 1 and Clueless does transmit, then Eve receives a 2.
Therefore, Eve is only certain of Alice’s transmission if Eve receives a 0 or a 2. The received symbol 1
is a noisy symbol. In the following matrix, x1 represents the actions of Alice, x2 the actions of Clueless,
and x3 the symbols that Eve receives. The time is in discrete, integral ticks.

Consider the following classification diagram (on the left) of the communication channel

ACE

A

a

<<zzzzzzz
C

c

OO

E

e

bbDDDDDDD


x1 x2 x3 t

0 0 0 t1
1 0 1 t2
0 1 1 t3
1 1 2 t4


Tokens in the channel are of the form 〈x1, x2, x3, t〉 where the allowable values of the combinations of xi

and tick time in the tuples are recorded in the matrix above (t is a natural number). For x = 〈x1, x2, x3, t〉,←−a (x) = 〈x1, t〉, ←−c (x) = 〈x2, t〉, and ←−e (x) = 〈x3, t〉. Types for component classifications A and C are
{0, 1} and the types for E are {0, 1, 2}. These types are injected into the channel (where the superscript
indicates which infomorphism did the injection). The channel gates, labeled with gi, and their respective
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conditional probabilities are the following:

g1: 0a, 0c `ACE 0e g2: 0a, 1c `ACE 1e

g3: 1a, 0c `ACE 1e g4: 1a, 1c `ACE 2e

P(0e | 0a, 0c) = 1 P(1e | 0a, 1c) = 1

P(1e | 1a, 0c) = 1 P(2e | 1a, 1c) = 1

Each gate transfers information with probability 1. That is, for every token in the channel, if the left
hand side of the gate is satisfied, the right hand side is satisfied. The channel connecting A, C, and E is
taken from a global perspective. To model the system from the more local perspective of only Alice and
Eve, the types injected by Clueless must be ignored. Consider an infomorphism k from a new channel to
ACE:

ACE AC ′E
koo

A

a

==zzzzzzz
C

c

OO

E

e

aaDDDDDDD
A

a

<<zzzzzzzz
C ′

c′

OO

E

e

bbDDDDDDDD

where C ′ is has lost the types 0 and 1 and unable to inject them into the channel AC ′E. The morphism
k is stipulated to be the identity on Tok(ACE) and an injection on Typ(AC ′E). In general, for the
infomorphism f : X −→ Y , the rules

Γf `Y ∆f

f -Elim
Γ `X ∆

Γ `Y ∆
f -Elim

Γ−f `X ∆−f

do not preserve validity (as previously noted). However, they fail to do so for very different reasons. The
first form is from Barwise/Seligman [3], the second form is new. The first fails because there can easily
be tokens of X which fail the conclusion, but they will not be of the form f(x) for x ∈ Tok(Y ). The
second form can fail because not every type of Y need be a type of X. Hence, even if Tok(X) = Tok(Y ),
tokens that inadvertently satisfied Γ `Y ∆ by failing to satisfy all types in Γ might easily satisfy all types
in Γ−f simply because the use of sets and functions only guarantee that (Γ−f )f ⊆ Γ, not (Γ−f )f = Γ

Consider the following use of the second form of k-Elim

0a, 0c `ACE 0e

k-Elim
0a `AC′E 0e

The conclusion of the rule does not hold because a token of the form 〈0, 1, 1, t〉 is a counter-example to the
conclusion whereas the premise is a valid gate in ACE. The normal token 〈0, 0, 0, t〉 of ACE will hold of
the conclusion, however this cannot be considered a normal token of AC ′E since it is a counter-example
to the conclusion of another use of k-Elim (see g′2 below). It is but a short step to assign a probability to
the conclusions of the four uses of this rule, namely the gates on left below and summarized compactly
in a channel matrix (identical to that shown in [6]) on the right:

g′1: 0a `p
AC′E 0e g′2: 0a `q

AC′E 1e

g′3: 1a `α
AC′E 1e g′4: 1a `β

AC′E 2e

( 0e 1e 2e

0a p q 0
1a 0 α β

)
by using the proportion of tokens which are normal (for each gate alone) to the total number of normal
and non-normal tokens (for each gate alone). Incidently, in [6], it is shown that p = α and q = β for this
example due to the way Clueless acts.
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5.3 Modeling Diagram Transmission

There is an interesting twist on the previous example which was brought up in [5] in connection with
steganography . The details are changed here due to space consideration. Suppose a bitmap of a picture
is to be sent and the picture contains the diagram of the numeral 1. Suppose further that there is a
noise producer similar to the previous example in that it flips bits in according to a uniform random
distribution. The question is, how is it that even with moderate amounts of noise and reduced channel
capacity, the 1 is still able to be received and recognized as a 1. Informationally, the noise, unless it rises
high enough, does nothing to degrade the information being sent.

There are several different ways of modeling the situation in channel theory. Essentially, they all
reduce to there being another channel involved that is derived from and in addition to the existing
communication channel. Specifically, assume the channel ACE from the previous example, except that
here Alice A is now sending the bits of the picture, C is the noise producer and Eve E is receiving the
picture. There is another channel with gates:

ÂCE

Â

â

>>|||||||
Ĉ

ĉ

OO

Ê

ê

``BBBBBBB

ĝ1: Oâ, Fĉ `
ÂCE

Oê ĝ2: Iâ, Fĉ `
ÂCE

Iê

ĝ3: Oâ, Fĉ `
ÂCE

Iê ĝ3: Ia, Fĉ `
ÂCE

Oê

This is a derived channel where Tok(Â) = P(Tok(A)), Tok(Ê) = P(Tok(E)), and Tok(Ĉ) = {f} for f

the noise producing function defined such that for token 〈X, f, Y 〉 with X ∈ Tok(Â) and Y ∈ Tok(Ê),
fn(X) = Y . In short, the token sets are up one set theoretical type level from the token sets of the
originating classification. The types for Â and Ê are I for the diagram of 1 and O for no diagram of 1.
Similarly to the previous example, Iâ represents the type I injected into the channel from Typ(Â). The
lone type of Ĉ is F.

For classification Â, let X |=bA I just when X appears as a picture of the diagram of 1 and X |=bA O
otherwise. X necessarily includes some surrounding pixels so that that the 1 may be discerned from the
background. The situation is similar for Ê. For noise producer C, fn |=bC F.

Every token in the channel satisfies one of the gates with the interpretation that the token Iâ just
when Alice thinks it looks like a 1 and satisfies Iê just when Eve thinks it looks like a 1. The token
satisfies the respective O types otherwise. Every token satisfies Fĉ because the image of every token in
Tok(Ĉ) under the infomorphism ĉ satisfies F in C.

The net result is that Fĉ is parametric to the gates since every token satisfies it and it appears in
every gate. Hence forming the infomorphism k̂, similar to k in the previous example, does not cause any
probabilities to crop up. Either the sent 1 looks like a 1 to Eve or it does not. Similarly for sending no
picture of a diagram of 1.
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